Minggu, 22 November 2015

program linier

PROGRAM LINIER
Program linear yaitu suatu metode untuk mencari nilai maksimum atau nilai minimum dari bentuk linear pada daerah yang dibatasi grafik -grafik fungsi linear.
Himpunan penyelesaian dari sistem pertidaksamaan linear dua peubah merupakan suatu himpunan titik-titik (pasangan berurut (x,y)) dalam bidang cartesius yang memenuhi semua pertidaksamaan linear dalam sistem tersebut. Sehingga daerah himpunan penyelesaiannya merupakan irisan himpunan-himpunan penyelesaian dari pertidaksamaan dalam sistem pertidaksamaan linear dua peubah itu. Untuk  lebih mudah dalam memahami daerah penyelesaian dari sistem pertidak-samaan linear dua peubah, perhatikan contoh berikut.
Contoh:
Tentukan daerah  penyelesaian dari sistem pertidaksamaan linear berikut!
3x + 5y ≤  15
x ≥  0
y ≥  0
Penyelesaian:
Gambar garis 3x + 5y =15, x = 0, dan y =0
Untuk 3x + 5y ≤  15
Pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
3 × 0 + 5× 0 ≤ 15
0 ≤  15 (benar), artinya dipenuhi
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (0,0)
Untuk x ≥ 0, pilih titik (1,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥ 0 (benar), artinya dipenuhi.
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (1,1)
Untuk y ≥ 0, pilih titik (1,1) kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥  0 (benar), artinya dipenuhi.
Sehingga himpunan penyelesaiannya adalah daerah yang memuat titik (1,1).
Selanjutnya arsir daerah yang memenuhi persamaan, seperti gambar dibawah ini.
Screenshot_26
Daerah  penyelesaian sistem pertidaksamaan merupakan irisan dari ketiga himpunan penyelesaian pertidaksamaan di atas, yaitu seperti terlihat pada gambar berikut ini (daerah yang diarsir).
Pertidaksamaan Linear juga dapat digunakan untuk memecahkan masalah dalam kehidupan sehari-hari. Hal ini dapat dilakukan dengan memodelkan masalah menjadi model matematika. Jadi, Model matematikamerupakan suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi.
Perhatikan contoh berikut :
Pak Adi merupakan seorang pedagang roti. Beliau menjual roti menggunakan gerobak yang dapat memuat 600 bungkus roti. Roti yang dijualnya yaitu roti manis dan roti tawar dengan harga masing-masing  Rp 5.500,00 untuk roti manis dan Rp 4.500,00 untuk roti tawar per bungkusnya. Dari penjualan roti tersebut, beliau memperoleh keuntungan Rp 500,00 dari sebungkus roti manis dan Rp 600,00 dari sebungkus roti tawar. Apabila modal yang dimiliki oleh Pak Budi adalah Rp 600.000, buatlah model matematika agar beliau dapat memperoleh keuntungan sebesar-besarnya!
Penyelesaian :
Permasalahan Pak Adi diatas  dapat dimodelkan dalam bentuk matematika dengan menggunakan sistem pertidaksamaan linear dua variabel. Dengan memisalkan banyaknya roti manis sebgai x dan roti tawar sebagai y sehingga diperoleh tabel sebagai berikut.
Screenshot_27
Berdasarkan tabel diatas jika kita tuliskan dalam bentuk pertidaksamaan linear menjadi
x + y ≤ 600,
5.500x + 4.500y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
Dua pertidaksamaan terakhir (baris ketiga) menunjukkan syarat dari nilai x dan y. Dikarena x dan ymerupakan pernyataan yang menyatakan banyaknya roti, maka tidak mungkin nilai x dan y bernilai negatif.
Perhatikan kolom keempat dari tabel di atas yang menyatakan fungsi yang akan ditentukan nilai maksimumnya (nilai optimum). Fungsi tersebut dapat dituliskan dalam persamaan matematika sebagai berikut.
f(x,y) = 500x + 600y
untuk menyelesaikan sistem pertidaksamaan diatas kita dapat mengikuti langkah berikut :
1. Ubah masalah tersebut ke dalam model matematika yaitu dengan membuat tabel, fungsi pembatas dan fungsi tujuan. Tabel di sini untuk mempermudah membaca data. Fungsi pembatas/kendala yaitu beberapa pertidaksamaan linier yang berhubungan dengan permasalahan tersebut. Fungsi tujuan/objektif yaitu suatu fungsi yang berhubungan dengan tujuan yang akan dicapai. Biasanya fungsi tujuan dinyatakan dengan f(x,y) = ax + by atau z = ax + by
2. Lukislah daerah penyelesaian dari fungsi pembatasnya
3. Tentukan koordinat-koordinat titik ujung daerah penyelesaian. Jika belum ada gunakan bantuan eliminasi dari perpotongan 2 garis
4. Ujilah masing-masing titik ujung daerah penyelesaian
5. Tentukan nilai terbesar/terkecilnya sesuai dengan tujuan yang akan dicapai
dimana langkah no 1 telah kita dapatkan karena disini rumus matematika menunjukan bagaimana cara membuat model matematika. Selanjutnya ikuti langkah berikutnya agar kita memperoleh daerah penyelesaiannya.

fungsi kuadrat

Fungsi kuadrat
 merupakan suatu fungsi yang pangkat terbesar variabelnya adalah 2. Mirip dengan persamaan kuadrat, namun berbentuk suatu fungsi.
Bentuk umumnya adalah: f(x) = ax^2 + bx + c, dengan a, b, c suatu bilangan real dan a \neq 0.
Contoh: f(x) = 3x^2 + 5x + 7.
Dengan demikian, f(0) = 3 \cdot 0^2 + 5 \cdot 0 + 7 = 7f(4) = 3 \cdot 4^2 + 5 \cdot 4 + 7 = 75, dll.

Grafik/Kurva Fungsi Kuadrat

Jika digambarkan pada koordinat Cartesius, grafik fungsi kuadrat berbentuk parabola. Parabola nya terbuka ke atas jika a>0 dan terbuka ke bawah jika a<0.
Berikut ini langkah-langkah dalam menggambarkan grafik/kurva nya:
Pertama, tentukan titik potong y = f(x) = ax^2+bx+c terhadap sumbu X, yaitu nilai xsaat y=0. Dengan demikian, nilai titik potong ini merupakan akar-akar dari persamaan kuadrat ax^2+bx+c=0.
Kemudian, tentukan titik potong terhadap sumbu Y, yaitu nilai y saat x=0.
Setelah itu, tentukan sumbu simetri nya. Sumbu simetri merupakan garis yang membagi dua parabola menjadi sama besar. Titik potong sumbu simetri terhadap sumbu x dapat dihitung dengan menggunakan rumus:
x = \frac{-b}{2a} atau x = \frac{x_1+x_2}{2}.
Terakhir, tentukan titik puncak (titik balik maksimum atau minimum) grafiknya. Titik puncak merupakan titik di mana nilai y = f(x) mencapai nilai maksimum atau minimum, sehingga parabola nya akan berbalik arah.
Koordinat titik puncak parabola adalah:
(\frac{-b}{2a}, \frac{D}{-4a}).
Di mana D adalah diskriminan, yaitu D = b^2 - 4ac.
Setelah mendapatkan titik-titik di atas, maka kita dapat menggambar grafik fungsi kuadrat dengan menghubungkan titik-titik diatas dengan garis yang berbentuk parabola.
Agar parabolanya terlihat lebih halus (smooth), kita dapat menghitung/menentukan titik-titik lain yang dilewati oleh kurva/fungsi y=f(x).
Berikut ini merupakan contoh grafik fungsi kuadrat y = f(x) = x^2-5x+4:
fungsi kuadrat contoh soal
Contoh Soal:
Jika y = f(x) = 2x^2 - 11x + p mempunyai nilai minimum - \frac{1}{8}, tentukanlah nilai p.
Jawab:
Nilai minimum tersebut merupakan titik puncak y= f(x).
Dengan demikian, dengan menggunakan rumus titik puncak kita dapat:
Titik puncak = \frac{b^2-4ac}{-4a} = \frac{(-11)^2 - 4 \cdot 2 \cdot p}{-4 \cdot 2}.
\Longleftrightarrow \frac{121-8p}{-8} = - \frac{1}{8} \Longleftrightarrow 121-8p=1 \longrightarrow 8p = 120.
Dengan demikian, p = \frac{120}{8} = 15.

Hubungan Diskriminan Grafik Fungsi Kuadrat

Jika pada persamaan kuadrat nilai diskriminan dapat kita gunakan untuk mengetahui apakah akar-akarnya riil, kembar, atau tidak mempunyai akar-akar riil, pada fungsi kuadrat kita dapat menggunakan nilai diskriminan untuk mengetahui apakah grafiknya memotong sumbu x di dua titik yang berlainan, menyinggung sumbu x, atau tidak menyinggung ataupun memotong sumbu x.
Berikut ini sifat-sifatnya:
Jika D merupakan diskriminan suatu fungsi kuadrat f(x) = ax^2 + bx + c, maka:
Jika D > 0, maka grafik y = f(x) memotong sumbu x pada dua titik yang berbeda
Jika D = 0, maka grafik y = f(x) menyinggung sumbu x pada satu titik.
Jika D < 0, maka grafik y = f(x) tidak memotong sumbu x.

Menyusun Fungsi Kuadrat Baru

Kita dapat menyusun fungsi kuadrat baru jika salah satu dari ketiga informasi ini diketahui, yaitu:
    1. Jika diketahui y=f(x) melewati tiga titik, yaitu (x_1, y_1), (x_2, y_2), dan (x_3, y_3), maka bentuk fungsinya dapat diketahui dengan mensubstitusikan nilai koordinat ketiga titik tersebut ke persamaan y = ax^2+bx+c. Dengan demikian, akan didapat tigapersamaan linear dalam a, b, dan c. Selanjutnya, tentukan nilai a, b, dan c dengan menggunakan metode eliminasi/substitusi.
    2. Jika diketahui y=f(x) memotong sumbu X di titik (x_1, y_1) dan (x_2, y_2), serta melalui satu titik lain ((x, y), maka bentuk fungsinya adalah:
      y = a(x-x_1)(x-x_2). Titik ketiga, yaitu (x, y) digunakan untuk mendapatkan nilai apada bentuk fungsi di atas.
    3. Jika diketahui y = f(x) melalui titik puncak (x_p, y_p) dan satu titik lain ((x, y), maka bentuk fungsinya adalah y = a(x-x_p)^2 + y_p.
Contoh:
Tentukanlah bentuk fungsi kuadrat y = f(x) yang memotong sumbu X pada titik (3, 0 dan (7, 0), serta melalui titik A(8, 5).
Jawab:
Karena diketahui titik potong terhadap sumbu X dan melewati satu titik lain, maka kita dapat menggunakan bentuk (2) di atas, yaitu y = a(x - x_1)(x-x_2).
Dengan demikian:
y = a(x - 3)(x-7).
Karena melewati titik (8, 5), maka:
5 = a(8-3)(8-7) \Longrightarrow 5 = 5a.
a = 1.
Jadi, bentuk fungsi kuadrat nya adalah y=f(x)= 1(x-3)(x-7)=x^2-10x+21.

http://www.sekolahmatematika.com/fungsi-kuadrat/